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ABSTRACT 

Barcode technology is widely applied to industrial automatic 

identification field for its low cost and high reliability as well as 

the fast real-time performance. Due to the complexity of low-light, 

rotation and blur in the industrial field, several barcode 

localization approaches which are superior in speed or accuracy 

fail to accurately locate and even detect the barcode. This paper 

proposes a real-time barcode approach that can effectively cope 

with the above problems when dealing with low-quality images. 

First, we rely on the gradient information of the pixels to obtain 

both orientation map and magnitude map. Then, we use the 

Shannon entropy theorem to get a salient map for the sake of 

segmenting salient patches of the high score. Later, we utilize the 

smoothing filter to remove the noise and connect the salient 

patches to form the barcode candidate BLOBs (Binary Large 

OBject). Finally, the correct barcode is selected from the above 

candidate BLOBs with a covariance matrix. We obtained 500 

experimental images covering the conditions of reflection, 

rotation, and low illumination from the industrial site. The 

experimental results based on the dataset show that our method 

exceeds significantly the other three advanced methods in 

accuracy. 

CCS Concepts 
• Computing methodologies → Object detection 

Keywords 
Barcode; localization; gradient information; covariance matrix 

1. INTRODUCTION 
As modernization of industrial fields booms such as logistics 

tracking and warehousing [1], barcode technology has become an 

indispensable part and there is a tendency that more precise 

localization of barcode is required when we need to know the 

information carried by the objects in conveyor belts and automatic 

production [2, 3]. However, since the lens is fixed focus and its 

resolution is low, the images acquired by the camera are more 

likely low-quality in practical. What’s worse, other conditions 

such as motion blur, noise, and reflection may often occur, and the 

object carrying barcode information is arbitrarily placed, thus it 

will pose a great challenge for barcode localization. In fact, all 

existing image-based barcode localization methods are affected to 

varying degrees when dealing with low-quality images. Of course, 

a polarizer can be used on the lens, which will reduce the effect of 

the reflection on the localization to a certain extent, but it does not 

have much effect. Thus, a efficient barcode localization method 

for low-quality images taken in poor conditions appears to be 

meaning for logistics industry. 

2. RELATED WORKS 
Barcode localization has been researched and optimized for many 

years. Previous work has mainly solved one of the specific 

problems such as ambiguity [4], so it can only be robust in 

specific situations. Certainly, there are other algorithms such as 

Sörös’s method [5] that can cope with most of the above when 

processing high-quality images, but fail to do so with low-quality 

images. These methods are mainly based on the spatial domain 

and the frequency domain. Spatial domain research includes 

Hough Transforms [6, 7, 8], orientation histograms [9, 10] and 

morphological operators [2, 3], etc., while frequency domain 

contains Gabor filters [11, 12], wavelet transform [13], etc. Gallo 

[14] is a spatial domain method that obtains the gradient map of 

the image by calculating the difference between the horizontal 

derivative and the vertical derivative of each pixel. After 

smoothing the gradient map, the author uses Otsu’s method [15] 

to convert it to a binary image and the BLOB, which maximizes 

the local window in the gradient map is considered to be the 

region where the barcode is located. However this method does 

not work for slanted barcodes. Oktem [13] uses wavelet transform 

to address the problem of segmentation and texture extraction, and 

utilizes wavelet transform and morphological operations to locate 

the position of the barcode, but this method is complicated to 

implement. Katona [2] first removes noise and enhances edges 

through Gaussian kernels, then chooses the candidate regions and 

keeps the possible regions respectively by depending on bottom-

hat filtering and distance mapping. Finally, the author uses the 

square structuring element and the morphological method to 
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remove the high-density text area around the barcode, but the 

method leads to more noise and results in a decrease in accuracy 

when the number of barcodes in the image increase. Sörös [5] 

proposes an algorithm based on covariance matrix. The edge 

detector derived from the covariance matrix is insensitive to 

illumination and rotation, while sensitive to scale size. Therefore, 

the author increases the scale invariance by repeating the 

calculation of the structure matrix on larger and larger image 

blocks and uses the saturation in the HSV to increase the 

robustness to the fuzzy barcode afterwards, but the biggest 

weakness is much time-consuming. Bodnár [16] combines 

probabilistic Hough transforms, distance transforms, contrast 

measuring, local clustering, and minimum-maximum 

morphological operations into an integrated detector to better 

locate barcodes. The aggregated weights can be obtained by 

calculating only one feature to maximize the recall value, but the 

recall rate is not high when confronting with low-quality images. 

Kutiyanawala [12] uses multi-channel Gabor filtering technique to 

extract directional textures, the author then utilizes the histogram 

to analyze the line segment pairs to locate the barcode region, but 

it is time-consuming. 

To address the problems existing in the methods above, this paper 

proposes an algorithm that can effectively locate the barcode 

while dealing with undesired conditions such as rotation, different 

scale and blur, which is more suitable for barcode localization of 

low quality images and its resolution time is within the average. 

Our algorithm is based on the visual cognition of barcodes of 

texture and shape. The Shannon entropy theorem is used to 

determine multiple patches with low entropy, then several patches 

with the same dominant orientation component are grouped into 

candidate BLOBs. Finally, we construct a covariance matrix to 

determine the BLOB that contains the barcode. 

The remainder of the paper is organized as follows. Section 2 

details the approach presented in this paper. Section 3 shows the 

experimental results of the proposed method and the other three 

methods on the public dataset and the private dataset. Section 4 

presents the summary and future work. 

3. PROPOSED METHOD 
This section describes a barcode localization algorithm suitable 

for low-quality images. The algorithm consists of image pre-

processing, salient patches detection, candidate BLOBs generation, 

and barcode BLOB verification. First, we generate the global 

orientation histogram and magnitude histogram of the image 

through the Sobel operator. Second, we compute each patch of the 

image with the Shannon entropy theorem and select the 

significant patches with low entropy. Later, we utilize the 

smoothing filter to remove the noise in the image and generate 

some barcode BLOBs by connecting the patches whose entropy is 

low with the same dominant orientation. Finally, we construct a 

covariance matrix of the gradient vectors in each small window of 

each BLOB and apply the canonical correlation to determine the 

BLOB whose edge property is highly strong and the most 

directional components are in the unidirectionally varying region  

(UNIVAR). 

3.1 Pre-Processing 
The most notable feature of barcode is that it contains many 

parallel stripes in the same direction, edge extraction does not 

need to consider multi-channel information of the image. 

Therefore, we first convert the original image I into a grayscale 

image G, which can greatly reduce the computational cost. Figure 

1 shows a grayscale image of an express with a barcode. 

 

Figure 1. An express with a barcode. 

To define the edges in the image, we use the Sobel operator to 

obtain the global gradient map of the image and get orientation 

and magnitude of the pixel p by the following equations (1) and 

(2). The orientation map O and the magnitude map M are 

respectively generated by calculating the overall pixels in the 

image (see Figure 2). The dark pixels in the orientation map are 

useful orientation data while the light pixels are useless data. The 

light pixels on the magnitude map will be used for further 

computational processing while the dark pixels will be discarded. 

In order to remove some irrelevant gradient information, only the 

pixels whose gradient value exceed the threshold are considered. 
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Where )( pI x and )(y pI are respectively the gradients of 

the pixel p in the x and y coordinates, and |)(| pI  can be 

determined with 
22 |)(||)(||)(| pIpIpI yy  . 

To be able to detect the barcode within an acceptable resolution, 

we divide all the pixels into 0N  bins covering )180,0[  

degrees to generate a global orientation histogram Gh  which 

derives from the orientation map O, the angular resolution sets to 

10 degrees. In order to select the principle orientation components 

from Gh , we count the number of pixels of each orientation 

component in the histogram, the orientation components 

exceeding 40% of the maximum orientation component are 

marked as the strong orientations so , otherwise they are regarded 

as the weak orientations wo .  
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Figure 2. Represents the orientation map and magnitude map. 

(a) the orientation map O of the image G      (b) the magnitude map M of the image G 

 
Figure 3. The azure bars represent the orientation components only with a bin, the orientation components exceeding the red 

(dotted) line are considered strong orientations, otherwise as weak orientations. The yellow-green bars represents orientation 

components with three consecutive bins, and the orientation components exceeding the red (solid) line are the strong orientations 

while the orientation component lower than the red line are the weak orientations. 

Subsequent experiments denote that the test results are not 

satisfying based on the statistics of the count of pixels of the 

orientation component covering a single bin. Hence, we make 

each orientation component cover three consecutive bins in linear 

mapping in this paper. The details can be seen in Figure 3. The 

experimental results show that the computation time can be 

reduced and the detection accuracy is greatly improved both for 

low resolution and high resolution images.  

3.2 Salient Patches Detection 
In order to detect possible barcode regions, we use a voting 

scheme. The orientation map is divided into patches that do not 

overlap each other, and the Shannon entropy in each patch is 

calculated by the method of Chang [17]. Concretely, we first 

calculate the largest orientation component in each patch and then 

get the absolute difference between each orientation component 

and the maximum orientation component. Afterwards, we sum the 

value of  Shannon entropy for each patch in the orientation map O. 

The equation (3) is given as followed. 
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Where the maxh  represents the maximum bins in the modified 

histogram in a patch. Intuitively, if the entire patch is within the 

barcode region, the value of Shannon entropy is relatively low. 

However, when the patch are full of the weak orientation, its 

value is low as well. Therefore, we only focus on the patch whose 

maximum orientation belonging to the strong orientaions. After 

that, we normalize the value of average Shannon entropy of each 

patch, the patches are considered not to be within the barcode 

region if the value of average Shannon entropy of the patch is 

below the threshold entropyT , which is used to set the saliency 

patchs with high saliency scores. By the equation (4), we generate 

the salient map S. 
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Where entropyAve  denotes the average Shannon entropy. In our 

experiments, entropyT  is set to 0.3 for the low-quality images. 

3.3 Candidate BLOBs Generation 
There are multiple patches with non-zero in the salient map S. 

Considering that the pixels of the barcode share the same 

orientation component, we need to connect the patches with the 

same orientation components to form the barcode candidate 

BLOBs. To eliminate the noise, we use a filter to smooth the 

salient map. Next, we use Ostu’s method [15] to convert map S 

into binary map B and connect multiple patches into candidate 

BLOBs with the same orientation components. Figure 4 shows an 

image with barcode candidate BLOBs, which is derived from the 

image in Figure 1. 

 
Figure 4. The image with barcode candidate BLOBs. 

3.4 Barcode Candidate BLOB Verification 
In order to reduce the running time, we remove the small size 

BLOBs. A threshold based on the image size is set in the 

experiment. When the image size is higher than 800*800, the 

threshold is set to 1/2 of the largest BLOB, otherwise it is set to 

1/4 [2]. Figure 5 shows an image with the remaining barcode 

candidate BLOBs. 

According to Harris’s [18] and Ando’s [19] researches, a 

covariance matrix can be used to categorize an image field into 

three regions: a unidirectionally varying region (UNIVAR), an 

omnidirectionally varying region (OMNIVAR), and a nonvarying 

region. For our purpose, we focus on the unidirectionally varying 

region. 

In order to apply the covariance matrix we defined a small sliding 

window to analyze each candidate BLOB, then we apply the 

UNIVAR Detector to categorize that window. The definition of 

UNIVAR Detector is shown in equation (5).    

Since the sliding window is binary and rectangular, the response 

of detector is noisy. Therefore, we apply a seven by seven 

Gaussian filter window and its standard deviation is set to one in 

order to reduce noise. When the value of reaches 1, it indicates 

that the grayness value changes in one dimension. Depending on 

the size of the BLOB, the sliding window can be swift “n” 

number of times inside the BLOB. As a result, we count the 

number of equal to one and divide it by the number of times we 

applied the sliding window, obtaining a success rate. The BLOB 

containing the barcode will have the highest success rate. 

 

Figure 5. The image with barcode BLOBs after removing 

small size BLOBs. 
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To remove the 
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eg P  condition, we add a small constant 

named const in the denominator, as shown in equation (6). 
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Due to the low quality of the image, there are many edges that are 

not sharp enough, and the value of may return a value other than 

one. Hence, we set a threshold, so that if is greater than one, it is 

considered as edge whose grayness varies one-dimensionally. The 

equation is given in (7). 
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Figure 6. Barcode localization result of our algorithm drawn 

in the yellow bounding box. 
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As mentioned above, the BLOB with the highest success ratio is 

elected as the barcode BLOB. Figure 6 shows the barcode 

localization result of our algorithm. 

4. EXPERIMENTS 
In order to implement and test the proposed algorithm, we 

employed the Opencv framework inside a C++ development 

environment, running on a hardware PC configured with 12G 

RAM, an Intel Core i3-4170 processor at 3.7GHz of speed clock. 

The purpose of this experiment is to compare the accuracy and 

speed response of our method against the other three algorithms 

respectively proposed by Yun [10], Sörös [5] and Gallo [14]. 

4.1 Dataset 
In order to measure the robustness of the above algorithms of 

barcode localization, we selected images from different sources 

and grouped them into several test datasets. The test datasets 

consisted of two parts.  

First, we randomly selected 900 images with a resolution of 

640*480 from Muenster BarcodeDB source created by 

Wachenfeld et al. [20], which can be of public access and name 

this dataset as Dataset_900. 

Considering that Gallo's method [14] only had a good positioning 

effect on vertically placed barcodes and the barcodes placed in 

any other orientation could hardly be correctly located, we 

randomly chose 600 images from the same source with a 

resolution of 640*480 with a vertical oriented barcode and named 

the dataset as Dataset_600. 

The images from the last dataset came from STO industrial site, 

considered as private access, the images were captured under low 

light at night and its resolution was 3072*2048. We randomly 

chose 500 test images and named the dataset as Dataset_500. 

It is worth to say that all of the above images contain only one 

barcode.  

 
Figure 7. The azure bars represent the orientation components only with a bin, the orientation components exceeding the red 

(dotted) line are considered strong orientations, otherwise as weak orientations. The yellow-green bars represents orientation 

components with three consecutive bins, and the orientation components exceeding the red (solid) line are the strong orientations 

while the orientation components lower than the red line are the weak orientations. 

4.2 True Positive and Accuracy 
We manually labeled all the test images and defined the region 

drawn in the bounding box as the ground truth. To measure the 

accuracy of the localization, we used the Jaccard similarity 

coefficient in equation (8) to estimate the overlap between the 

actual bounding box and the bounding box generated by the above 

four algorithms. 

||

||
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BA

BA
BA




                             (8) 

Where A represented the Ground Truth we draw in the image and 

B stood for the bounding box of the detection region drawn by the 

algorithms. 

In addition, we supposed that the value of Jaccard similarity 

coefficient exceeding 0.6 indicated a good match, concretely, 

which means that barcode is correctly located and is considered as 

True Positive. We tested in the above three datasets, the True 

Positive and accuracy are respectively shown in Table 1 and Table 

2. As can be seen from Table 2, on the Dataset_900 and 

Dataset_600 dataset, the barcode localization accuracy of the 

above four algorithms is all above 80%, and the difference 

between them is not distinct. But on the Dataset_500 dataset, our 

method has more obvious localization accuracy than the other 

algorithms. Figure 7 shows the localization of our method and the 

other three methods. 

The three line graphs in Figure 8 summarize the simulation results 

considering the Jaccard similarity coefficient ranging from 0.1 to 
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0.9 for each dataset. In this way we can more easily evaluate the 

performance of each method for any given threshold.   

Intuitively, we can conclude that, for high-quality images (a) and 

(b) in Figure 8, there is no apparent advantage of our method in 

comparison with the other three. However, for low-quality images 

(c) in Figure 8, it can be seen that our method outperforms. 

 

 

 
Figure 8. The performances of the four algorithms on the three datasets. 

(a) experimented on the Dataset_900 

(b) experimented on the Dataset_600 

(c) experimented on the Dataset_500 

 
Figure 9. Examples of barcode localization for the above four algorithms. 

(a)(b) show Gallo’s method [14] (green box in the image), Sörös’s method [5] (blue box in the image) and our experimental 

algorithm (yellow box in the image) barcode localization method results. The Yun’s barcode localization method failed to locate the 

barcode, because the image don’t meet its requirement. 

 

Table 1. True Positive for barcode localization algorithms on 

three datasets 

Methods 
Dataset_900 

(640*480) 

Dataset_600 

(640*480) 

Dataset_500 

(3072*2048) 

Yun [10] 808 548 185 

Gallo[14] 664 536 6 

Sörös [5] 637 432 156 

Ours 786 545 422 

4.3 Average Resolution Time 
Speed is a key performance indicator in industrial sites. We tested 

on dataset_900, dataset_600 and dataset_500 respectively, and the 

average resolution time is shown in Table 3. As can be seen from 

the Table 3, Gallo’s method [14] takes the shortest time on each 

dataset, and Sörös’s [5] takes the longest time. In large-scale 

images, the resolution time of our method is close to the Yun’s 

method [10], but is much better than Sörös’s method and lower 

than Gallo’s method. 

Table 2. Accuracy for barcode localization algorithms on 

three datasets 

Methods 
Dataset_900 

(640*480) 

Dataset_600 

(640*480) 

Dataset_500 

(3072*2048) 

Yun [10] 89.8% 91.3% 37.0% 

Gallo[14] 73.8% 89.3% 1.2% 

Sörös [5] 70.8% 72.0% 31.2% 

Ours 87.3% 90.8% 84.4% 

Table 3. Average Resolution Time for barcode localization 

algorithms on three datasets 

Methods 
Dataset_900 

(640*480) 

Dataset_600 

(640*480) 

Dataset_500 

(3072*2048) 

Yun [10] 16.8 ms 17.8 ms 257.1 ms 

Gallo[14] 6.2 ms 6.5 ms 119.3 ms 

Sörös [5] 41.5 ms 44.3 ms 1016.6 ms 

Ours 24.6 ms 25.5 ms 261.9 ms 
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4.4 Limitations 
Due to the existence of reflections and other adverse factors in the 

industrial site, sometimes the edges of certain areas of the image 

might not be strong enough and some misleading stripes might 

also appear in some areas, which easily leads to mistake the 

wrong BLOB for the barcode region. Figure 9 shows wrongly-

detected images. 

5. CONCLUSION AND FUTURE WORK 
This paper proposes a novel barcode localization algorithm, which 

can better solve the barcode localization problem for low-quality 

images. Experimental results on public datasets show that our 

approach is close to other methods in terms of accuracy. 

Furthermore, in the private dataset, even with more severe adverse 

factors such as rotation, reflection and blur in the barcode, our 

proposed method is much better than the other three methods, and 

it sustains good robustness. Also, the average resolution time of 

the proposed method is acceptable compared to other methods, 

which is possible to be applied in the industrial fields. 

In the future, as the logistics industry continues to be prosperous, 

packages might contain more than one barcode at different sizes 

and shapes. Meanwhile, the materials and ink for printing 

barcodes might be changed for different functions, which also 

pose a big challenge for barcode localization.  

Hence, we will conduct further investigation to focus on the error 

detection by reflection, and find other solutions to enhance our 

method to address the coming challenges.   
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