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Abstract
We proposed a system for generating relational gestures that con-
vey semantic relations such as similarity and difference between
two objects. To understand how humans naturally express such
relations, we conducted an observational study with experienced
shopkeepers as they frequently compare objects using both speech
and gestures. Through analysis of their interactions, we identified
four common types of object relations and extracted representa-
tive gesture patterns for each. For example, similarity was often
conveyed through synchronized hand movements bringing both
hands closer together, accompanied by alternating gaze between
two objects. Based on these findings, we developed a gesture gen-
eration system in which one large language model (LLM) infers
the intended object relation from utterance text, and another LLM
adapts gestures from a co-speech gesture system that aligns them
with speech, integrating relational cues without disrupting this
alignment. These modified gestures were automatically mapped
onto a dual-arm robot. We evaluated the system through two user
studies. In the first study, 20 participants were asked to identify
object relations from 24 relational gestures performed by the ro-
bot without accompanying speech. They correctly identified the
intended relations with an average accuracy of 89.8% across all
relation types. In the second study, another 20 participants com-
pared two robot conditions in a within-subjects design: one with
relational gestures and one without. Results showed that the ro-
bot using relational gestures was perceived as more competent,
sociable, and animate compared to the robot without them.

CCS Concepts
• Human-centered computing→ Human computer interac-
tion (HCI); • Computer systems organization→ Robotics.
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(a) Attention to one object

This perfume is
made in France.

(b) Similar

Both perfumes
smell similar.

(c) Different

This perfume (right) 
is expensive.   This 
one (left) is cheap.

Figure 1: Robot gestures during object comparison.

1 Introduction
Gestures play a fundamental role in human communication. Across
a wide range of social settings from conversation [21] and story-
telling [29] to formal instruction [3, 36], people naturally accom-
pany their speech with gestures. These gestures help draw attention,
reinforce or supplement spoken content, convey semantic content,
and visualize spatial or abstract concepts [2, 15, 21, 29].

Among the diverse types of gestures, one important category
involves holding and moving two physical objects while describing
their semantic relations, such as similarity or difference. We refer to
this category as relational gesture. Relational gestures are especially
common in product demonstrations, educational settings, and col-
laborative decision-making. When well synchronized with speech,
they reinforce verbal content while visually clarifying relational
meanings, making communication more intuitive and engaging.

Despite its prevalence in everyday human interaction, relational
gestures remain underexplored in the field of human-robot interac-
tion (HRI). For robots designed to engage in multimodal communi-
cation, the ability to perform such gestures is essential. Imagine a
robot holds two objects but remains motionless. Even with accurate
verbal descriptions, its communicative intent may appear ambigu-
ous, potentially leading to listeners’ confusion or disengagement.
In contrast, expressive gestures such as raising one hand while
looking towards the referred object ((Fig. 1 (a)), moving both hands
closer while alternating gaze (Fig. 1 (b)) to indicate similarity, or
sequentially raising one hand while orienting the head toward the
referred object, then lowering the other hand while shifting gaze to
the other object (Fig. 1 (c)) to emphasize difference, can significantly
enhance clarity and effectiveness of the communication, especially
when verbal cues are limited or ambiguous.

This raises a key challenge: How can robots effectively perform
relational gestures in coordination with speech? To address this gap,
we propose an LLM-based co-speech gesture generation system
inspired by how humans naturally synchronize relational gestures
with speech. Our work makes four primary contributions. First, we
identify four object relations commonly conveyed in demonstrative
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comparisons. Second, we propose an LLM-based system that pro-
duces relational gestures synchronized with speech to convey these
relations. Third, we demonstrate the effectiveness of our system
through human studies, showing that people can accurately identify
object relations from robot gestures. Fourth, we explore the impact
of relational gestures on enhancing a robot’s social acceptance,
particularly in the role of a shopkeeper.

2 Related Work
2.1 Gestures in Human Communications
Gesture refers to a visible action of any body part when used as an
utterance or as part of an utterance [22]. Gestures are commonly
categorized into iconic, metaphoric, deictic, and beat gestures [29],
each serving distinct communicative functions [2, 15, 21, 29]. Recent
work has examined whether the semantic congruency between rep-
resentational gestures and lexical words is evaluated similarly when
words are conveyed through text versus speech [18]. Existing work
has also shown that gestures can represent conceptual distinctions,
for example by maintaining spatial separation to express contrast
or using shared spatial locations to convey similarity [22, 46]. Such
gestures use concrete physical actions to represent abstract con-
cepts and fall within the broader scope of metaphoric gestures.
While these studies demonstrate that gestures can refer to objects
or encode conceptual relations, the use of gestures to communicate
semantic relations between objects remains underexplored.
2.2 Gestures in Human-Robot Interaction
Gestures serve as an essential non-verbal modality in HRI, en-
compassing hand movements, facial expressions, gaze shifts, head
motions, and full-body movements [35]. Prior research has widely
recognized the importance of gestures in making robot communi-
cation more legible, expressive, and socially appropriate [11, 12, 14,
25, 26]. Recent research also focuses on conveying object properties
through physical interactions with one object [33, 37]. Furthermore,
supportive gestures toward a single object can increase perceived
politeness and competence in service contexts [32]. While these
studies provide valuable insights into gesture interaction with one
object, more recent work has begun to explore multi-object scenar-
ios. For example, multiple gesture types were combined to perform
actions on two objects (e.g., swap the positions of two objects) with
gesture sentences[41]. Yet, the communication of semantic relations
between objects through robot gestures remains underexplored.
2.3 Co-speech Gesture Generation
Co-speech gestures are visible actions produced while speaking
[42], and their generation therefore focuses on producing human
body movements aligned with speech input [7]. Existing approaches
can be broadly divided into rule-based and data-driven methods
[6, 24, 31]. However, deterministic generative models often yield
oversmoothed gestures [4, 44] due to their inability to handle many-
to-many mappings. Recent advances therefore adopt probabilistic
generative models, such as diffusion-based gesture synthesis [7, 27].
In parallel, LLM-driven methods incorporate explicit semantic rea-
soning, either via gesture retrieval from a self-built gesture library
[47] or prompt-based gesture description [34]. Despite these ad-
vances, the encoding of semantic relations between objects through
gestures remains underexplored.

2.4 Large Foundation Models in Robotics
Recent advancements in Large Foundation Models (LFMs), includ-
ing LLMs, Vision-Language Models (VLMs), and Vision-Language-
Action Models (VLAs), show significant potential in robotics. LLMs
demonstrate capabilities from low-level planning [30, 40] to high-
level planning [1, 17]. VLMs are also leveraged to interpret social
context, enabling a mobile robot to plan socially aware paths [38] or
generate task plans for robots [43]. Building on this, VLAs leverage
robotics data to enable direct robot control [13, 23, 48]. In addition,
LLMs are explored for robot gesture generation such as head ges-
tures [28] and hand gestures [16]. While these studies address robot
control or gesture generation in isolation, the generation of robot
gestures that convey object relations remains underexplored.

3 Relational Gestures During Object
Comparisons

During object comparisons, people’s body movements naturally
accompany their speech, helping to highlight similarities or em-
phasize differences between objects. Understanding these naturally
occurring gestural patterns is essential for enabling robots to com-
municate in a more human-like and intuitive manner. In this section,
we observe how shopkeepers naturally use speech and gestures to
compare objects, and analyze the patterns that emerge.

3.1 Data Collection from Human
Demonstrations

To collect expressive relational gestures, we recruited shopkeepers
to compare objects. From their speech, we identified four types of
object relations.

3.1.1 Participant Selection. We recruited two experienced fe-
male shopkeepers (aged 30 and 60), each with over ten years of
retail experience. Both participants reported rich experience in
comparing products using both speech and gestures to highlight
features, explain similarities and differences, and assist customers
in making well-informed decisions.

3.1.2 Selection of Objects. Our study included eight object pairs
for comparison: two generic items (bottle and box), and six com-
monly used items (smartphone, earphones, watch, handbag, wallet,
and pen). These objects were used based on two criteria: (1) ob-
jects should be handheld with multiple contrastive features; and
(2) objects should commonly be used in everyday or demonstra-
tive communication. Together, they represent both general and
context-specific scenarios.

3.1.3 Procedures. Upon arrival, shopkeepers received a brief
overview and signed informed consent. They were then asked to
compare the eight object pairs using natural speech and gestures,
just as they would in real-world customer interactions. For each pair,
we provided several candidate comparison features (e.g., weight,
material) and encouraged participants to introduce additional fea-
tures as needed.

The study consisted of two rounds across all pairs. In the first
round, participants compared each of the eight pairs while holding
each object in a designated hand. In the second round, the same
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sequence of pairs was repeated, with the two objects swapped
between hands. The entire session lasted approximately three hours.

3.1.4 Identification of Object Relations. We video-recorded
all sessions and transcribed the shopkeepers’ natural speech. From
these transcripts, we focused only on utterances that directly re-
ferred to the hand-held objects. We then annotated these sentences
with the type of semantic relation they expressed. Because the
shopkeepers compared a diverse set of object pairs in natural sales
interactions, these utterances provided a wide variety of object
descriptions. Based on their semantic content, we identified three
frequently occurring relation types:

• No-relation: Mentions both objects without expressing any
relation. For example, “Let’s look at the screen size of these
two phones.”

• Similar: Expresses similarity between the two objects. For
example, “The size of these two phones is similar.”

• Different: Expresses difference between the two objects.
For no-relation and similar, identifying the object relations con-

veyed in utterances was straightforward, as the relations were
typically expressed within a single sentence. However, for different,
contrasts were often conveyed across two consecutive utterances.
For example, “The iPhone is thinner. The Android is thicker.” To
ensure consistent annotation, we applied minimal coding criteria
to determine whether a pair of utterances represented different: (1)
each utterance refers to a different object; (2) both concern the same
semantic topic (e.g., size, price); and (3) they collectively express an
explicit contrast.

In addition to these three relation types, we found that most ut-
terances referred to only one object without making a comparison.
While these utterances did not express a semantic relation, they
coincided with important and meaningful gestures that draw atten-
tion to one object. We thus included them as a separate category:

• One-object: Refers to a single object. For example, “The
color of the iPhone is red.”

In total, we annotated 370 one-object, 51 no-relation, 83 similar,
and 29 different utterances.

3.2 Gesture Analysis
To understand how gestures convey object relations in coordination
with speech, we conducted an utterance–gesture analysis. For each
utterance collected in Sec. 3.1, we examined a range of gestural
features, including the number of hands involved, the direction of
hand movements, head movements, the amplitude of head and hand
movements, and the presence of repeated movements. Through
this analysis, we identified three key features that effectively distin-
guish between different object relation types: hand pattern, hand
direction, and focus of attention. In addition, we identified the most
representative gesture associated with each relation type.

3.2.1 Hand Pattern. This feature captures how both hands are
coordinated when conveying object relations:

• One-hand: Only one hand moves while the other remains
still. For example, the shopkeeper raises the left hand holding
a long wallet while keeping the right hand holding a short
one at rest.

Table 1: Hand pattern
One-object

(370)
No-relation

(51)
Similar
(83)

Different
(29)

One-hand 335 1 3 0

Synchronized 4 14 62 4

Sequential 3 10 3 22

Still 20 26 15 3

Other 8 0 0 0

Table 2: Hand direction
One-object

(370)
No-relation

(51)
Similar
(83)

Different
(29)

Vertical 326 21 26 22

Horizontal 15 3 36 4

Other 29 27 21 3

• Synchronized: Both hands move simultaneously with simi-
lar or symmetrical trajectories. For example, the shopkeeper
moves both hands holding wallets upward and forward.

• Sequential: The two hands move one after the other in an
alternating manner. For example, the shopkeeper raises the
left hand holding a long wallet, and then lowers the right
hand holding a short one.

• Still: Both hands remain motionless.
• Other: All other cases.

We analyzed the distribution of hand patterns across four relation
types. Tab. 1 presents the frequency of each hand pattern (rows)
observed within each relation type (columns). For example, among
the 370 one-object utterances, 335 were accompanied by one-hand
gestures, suggesting a strong association between one-object and
one-hand. In contrast, most similar utterances (62 out of 83) were
expressed with synchronized hand movements, while most different
utterances (22 out of 29) involved sequential hand movements.

3.2.2 Hand Direction. This feature captures the dominant axis
along which the hands move:

• Vertical: Upward or downward movements. For example,
the shopkeeper raises the left hand holding a handbag.

• Horizontal: Side-to-side or inward–outward movements.
For example, the shopkeeper swings both hands holding
handbags from left to right.

• Other: All other cases.
Similarly, Tab. 2 also presents the distribution of hand directions

across four relation types. For example, vertical hand movements
dominated the one-object (326 out of 370) and different (22 out of 29).
In contrast, similar was more often expressed through horizontal
movements (36 out of 83). No-relation frequently fell into other (27
out of 51), as many involved still hands without clear directions.
3.2.3 Focus of Attention. This feature captures how the head
was oriented toward both hands holding objects:

• One-target: The head is directed toward the hand holding
the referred object. For example, the shopkeeper oriented
the head toward the right hand holding an electronic watch.

• Both-target: The head is oriented to encompass both hands
simultaneously. For example, the shopkeeper slightly tilts
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Table 3: Focus of attention
One-object

(370)
No-relation

(51)
Similar
(83)

Different
(29)

One-target 333 0 0 0

Both-target 1 3 23 2

Sequential 1 31 38 22

Other 35 17 22 5

the head downward to look at the area between both hands
holding watches, giving balanced attention to them.

• Sequential: The head alternates its gaze between both hands.
For example, the shopkeeper looks at the right hand holding
an electronic watch, then shifts gaze to the left hand holding
a smartwatch.

• Other: All other cases.
Likewise, as shown in Tab. 3, one-object was most often accompa-

nied by one-target (333 out of 370). In contrast, no-relation, similar,
and different were most frequently expressed with sequential head
movements (31 out of 51, 38 out of 83, and 22 out of 29, respectively).
3.2.4 Summary of Representative Gestures. The analyses of
hand patterns, hand directions, and focus of attention revealed
consistent combinations that characterize each relation type. By
combining these three features, we identified the most representa-
tive gesture for each relation (Fig. 2):

• One-object: One hand holding the referred object rises while
the other remains still (319 out of 370), and the head orients
toward the hand holding the raised object (333 out of 370).

• No-relation: Both hands holding objects remain still (26 out
of 51), and the head alternates its gaze between the hands
(31 out of 51).

• Similar: Both hands holding objects move horizontally to-
ward each other in synchrony (34 out of 83), and the head
alternates its gaze between the hands (38 out of 83).

• Different: One hand holding the referred object rises or
lowers as the gaze follows it, then the other hand moves in
the opposite direction (13 out of 29) and the head shifts to
the other hand (22 out of 29).

Overall, these findings suggest that object relations are conveyed
not by isolated features, but by coordinated patterns of hand and
head movements. These representative gestures provide the basis
for designing relational gestures.

4 Relational Gesture Generation System
4.1 Overview
We propose an LLM-based system that enables robots to compare
objects through co-speech relational gestures. Fig. 3 illustrates the
architecture of our proposed system, which consists of three main
modules: a co-speech gesture generator, a relational gesture planner,
and the gesture integrator. The system takes utterance text used
for comparing objects as input. The speech synthesizer generates
speech audio, which is then fed into the co-speech gesture generator
to produce gestures synchronized with speech. Simultaneously, the
same text is processed by the relational gesture planner to generate
the relational gesture plan that reflects the semantic object rela-
tions. The gesture integrator then integrates the relational gesture

(b) No-relation(a) One-object (c) Similar (d) Different

Figure 2: Representative gestures for each object relation.

Speech 
synthesizer 

Relational gesture 
planner Robot

Utterance
text

Gesture

Relational 
gesture

Relational 
gesture plan

Speech Co-speech gesture
generator

Gesture
integrator

Figure 3: Architecture of the proposed system.

plan with the co-speech gestures, integrating relational cues while
preserving the synchrony between speech and gestures.

We adopt a modular architecture for two key reasons. First, it
allows precise control over relational gestures especially since our
goal is to investigate how relational gestures contribute to commu-
nication. Second, by designing the relational gesture planner as a
stand-alone module, it can be reused and adapted across different
tasks and robotic platforms. To maintain generalizability, our plan-
ner does not rely on handcrafted gesture labels (e.g., annotating
which sentence should trigger which hand and head movements).
Instead, the planner only requires the utterance text and minimal
object–hand assignments (which object is in each hand).

4.2 Co-Speech Gesture Generator
Co-speech gestures serve as the foundation onto which our system
integrates relational gestures. To generate these base gestures, we
use a co-speech gesture generator that takes speech audio as input
and outputs full-body skeleton trajectories. We adopt SynTalker [7]
to instantiate this module, as it represents a state-of-the-art model
for producing full-body gestures synchronized with speech.

For generalizability across robotic platforms, we focus only on
seven upper-body joints: the head, shoulders, elbows, and wrists.
These joints are most relevant for relational gestures and ensure
that our system can operate on robots with varying degrees of
freedom. The extracted sequences of seven joints are then passed
to the gesture integrator for integration with relational gestures.

4.3 Relational Gesture Planner
The relational gesture planner is responsible for determining which
gestures should be performed to express semantic object relations
described in the utterance text. To accomplish this, we implement
the planner using a large language model (GPT-4.1 1) through
prompt-based inference.

The planner operates in a single end-to-end pipeline, and the
representative gesture descriptions identified in Sec. 3.2.4 serve as
the main knowledge source for the LLM prompt. Specifically, the
1https://platform.openai.com/docs/models/gpt-4.1



Communicating Object Relations through Robot Gestures HRI ’26, March 16–19, 2026, Edinburgh, Scotland, UK

(a) One-object (b) No-relation

(c) Similar (d) Different

Figure 4: Examples of robot relational gestures.

behavioral patterns we extracted from human demonstrations are
directly passed to the model to guide its reasoning. To make these
descriptions more general, we slightly modified them by removing
explicit references to specific objects, and converting them into
bullet-point format. For example, the original description for similar
(“Both hands holding objects move horizontally toward each other
in synchrony, and the head alternates its gaze between the hands”)
was rephrased as: “- Both hands move horizontally toward each
other in synchrony. - The head alternates its gaze from one hand
to the other hand.” The full prompt therefore includes:

• Definitions of the four object relation types (Sec. 3.1.4);
• The modified representative gesture descriptions for each
relation type (as above);

• The utterance text for comparing objects;
• Object-hand assignments (e.g., “The leather handbag is in
the left hand. The canvas one is in the right hand”).

These inputs are used to instruct the model to (1) infer the re-
lation type described in the utterance, and (2) generate a gesture
plan specifying a high-level textual description of what type of
relational gesture should occur, which will be used by the gesture
integrator to integrate gestures. For example, given the utterance
“Both handbags are made in France,” the planner generates the plan
“- Both hands move horizontally toward each other in synchrony. -
The head alternates its gaze from the left hand to the right hand.”

4.4 Gesture Integrator
Once a relational gesture plan is obtained, the gesture integrator in-
tegrates it with the full-body co-speech gestures. While it may seem
intuitive to generate the relational gestures first and then integrate
them with co-speech gestures, this approach is impractical for two
key reasons: (1) LLMs do not know the number of skeleton frames
needed to represent relational gestures, making temporal alignment
difficult; and (2) the skeletons generated by LLMs may not conform
to the kinematic structure used by the co-speech gesture generator.

Instead, we treat the gestures from co-speech gesture generator
as a base layer, and apply relational gestures as an overlay, modify-
ing only the relevant joints (head and arms) as specified by the plan
from the relational gesture planner. To support LLM interpretation,

we preprocess the skeleton trajectories of co-speech gestures by
converting the coordinate system and downsampling the sequence
to reduce input length [16]. We apply integration rules based on
the plan: (1) if only one hand is used, co-speech gestures are ap-
plied only to that hand; (2) for synchronized gestures, co-speech
gestures are mirrored across both hands; (3) when both hands move
independently, gestures are applied separately; and (4) co-speech
gestures are applied to the head consistently. Finally, the integrated
gestures are upsampled back to restore frame alignment with the
speech audio. We use the o3 model2 for this module.

4.5 Robot
We used Robovie [19], a mid-sized humanoid robot (1.2 m tall)
equipped with a wheel-based mobile base and human-like arm and
head motions. Both arms have 4 degrees of freedom (DoF), and the
head has 3 DoF, enabling expressive hand and head movements.

Given a relational gesture, we compute the head and arm orien-
tations and automatically map these joint angles to the robot.

5 Study 1: Relational Gestures Recognition
The goal of this study is to evaluate how effectively robot-performed
relational gestures communicate object relations without speech.
Specifically, we measure recognition accuracy, defined as how accu-
rately participants can identify the intended object relation based
solely on the robot’s gestures.

5.1 Participants
We recruited 20 participants through a part-time job recruitment
website, ranging in age from 18 to 60 years (𝑀 = 26.900, 𝑆𝐷 =
12.981). Ten participants self-identified as male and ten as female.
All participants were compensated with 4000 JPY.

5.2 Stimuli
We used three representative object pairs as stimuli for the exper-
iment: smartphones, handbags, and watches, selected from the set
described in Sec. 3.1.2. For each object pair, our system generated
2https://platform.openai.com/docs/models/o3
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Figure 5: Setup for the experiment in Study 1.

two gesture variations per relation type using different input ut-
terances. This resulted in a total of 24 robot-performed relational
gestures. Examples of these gestures are shown in Fig. 4.

5.3 Procedure
Participants were welcomed into a large room where the robot was
situated and were given an overview of the study before signing
a consent form. Two identical black boxes were used as props to
eliminate any influence from object appearance.

The setup of the experiment is shown in Fig. 5. Each participant
completed the task individually. They observed 24 robot-performed
gestures without speech (Sec. 5.2), each corresponding to one of
four object relation types. After each gesture, participants selected
the relation they thought the robot intended to convey. This setup
allowed us to assess recognition accuracy across relation types.
To ensure each interaction was independent, participants were
informed that any of the four relations could be attributed to each
gesture. To reduce potential order effects, a partial Latin square
design was used to counterbalance the gesture order. To reflect the
gesture-only nature of the task, we revised the original definitions
of the object relations (Sec. 3.1.4) to focus solely on the relations
conveyed through gestures, and presented them to the participants:

• One-object: Attention is directed toward a single object.
• No-relation: Attention is directed toward both objects, but
no specific relation is conveyed.

• Similar: Expresses the similarity between the two objects.
• Different: Expresses the difference between the two objects.

Finally, participants took part in a semi-structured interview.
The study was approved by the Institutional Review Board.

5.4 Results
5.4.1 Recognition Results. Tab. 4 shows the confusion matrix
of participants’ responses, along with the recognition accuracy for
each object relation. Each column represents each gesture type
performed by the robot, and each row corresponds to the relation
recognized by participants. Overall, participants correctly identified
the intended object relations in 89.8% of the trials. The recognition
accuracy was 99.2% for one-object, 87.5% for no-relation, 83.3% for
similar, and 89.2% for different.

The most common misclassifications involved no-relation. Specif-
ically, similar was misclassified as no-relation in 12 instances, and
different was misclassified as no-relation in 9 instances. These results
suggest that, in the absence of speech, the visual distinctions among
no-relation, similar, and different may be less distinct, making them
more difficult to differentiate.

Table 4: The recognition accuracy for object relations
One-object

(120)
No-relation

(120)
Similar
(120)

Different
(120)

Average
(480)

One-object 119 2 1 1

No-relation 0 105 12 9

Similar 0 5 100 3

Different 1 8 7 107

Accuracy 0.992 0.875 0.833 0.892 0.898

5.4.2 Interview Results. The interview results were consistent
with the recognition results. All participants reported that one-object
was the easiest to recognize. Seven participants mentioned that the
robot’s hand and head movements made the gestures vivid and easy
to recognize. Four participants noted that some gestures, particu-
larly similar (e.g., bringing both hands closer together), resembled
those commonly used by human shopkeepers. In contrast, four
participants expressed difficulty distinguishing no-relation from
similar and different, citing a lack of clear visual contrast.

6 Study 2: Co-Speech Relational Gesture
Evaluation

We investigate how relational gestures affect people’s impressions
of a robot during object comparison. Specifically, we examine the
effect of our proposed system, which integrates relational gestures
into co-speech gestures, by comparing it against a baseline that uses
only co-speech gestures generated by SynTalker [7]. We selected
SynTalker as the baseline because it represents a state-of-the-art
model in recent co-speech gesture generation research. Since our
proposed system also incorporates SynTalker for generating base
gestures, this comparison allows us to isolate and assess the added
value of relational gestures in shaping perceptions of the robot.

6.1 Hypotheses and Predictions
Prior research has shown that robots exhibiting meaningful motions
are perceived as more competent and skilled than those without
such motions [9, 32]. In our study, relational gestures convey se-
mantic relations between objects and can therefore be considered
meaningful motion. This leads to the following prediction:

• P1: Robots performing co-speech relational gestures will be
perceived as more competent than those performing only
co-speech gestures.

Robots are perceived as more sociable when they convey infor-
mation clearly through verbal or non-verbal modalities [20]. Given
that Study 1 showed people could correctly identify object relations
from relational gestures, we made the following prediction:

• P2: Robots performing co-speech relational gestures will
be perceived as more sociable than those performing only
co-speech gestures.

Robot gestures derived from human demonstrations tend to
appear more human-like [10]. Moreover, robots exhibiting a variety
of congruent gestures are often perceived as more human-like
compared to those with limited or inconsistent gestures [45]. Since
relational gestures are modeled from shopkeeper behaviors and
offer greater diversity than co-speech gestures. Accordingly, we
made the following prediction:
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Figure 6: Examples of the robot’s behavior in Study 2.

• P3: Robots performing co-speech relational gestures will
be perceived as more animate than those performing only
co-speech gestures.

6.2 Participants
We recruited 20 participants based on a priori power analysis (Co-
hen’s 𝑑 = 0.8) [8], which indicated that a minimum of 15 partici-
pants was required to achieve 80% power at a 95% confidence level.
Participants were recruited through a part-time job recruitment
website, and ranged in age from 18 to 59 years (𝑀 = 32.150, 𝑆𝐷 =
16.178). Ten participants self-identified as male and ten as female.
All participants were compensated with 4000 JPY.

6.3 Conditions
The robot’s performance was compared under two conditions:

• Proposed: The robot operates with the gestures generated
from the proposed system described in Section 4.

• Baseline: The module of the relational gesture planner is
excluded from the architecture of the proposed system (Fig.
3). In this case, the robot operates with the gestures generated
from the co-speech gesture generator without being modified
by the gesture integrator.

We employed a within-subjects design, with the order of con-
ditions counter-balanced. The spoken utterances were identical
across conditions; the only difference lay in the robot’s gestures.

6.4 Procedure
Participants were welcomed into a large room where the robot
was situated and were given an overview of the study before sign-
ing a consent form. In both conditions, the interaction followed
a one-way format. The robot acted as a shopkeeper introducing
and comparing two wallets. The participant, assigned the role of a
customer, was instructed to listen and observe the robot, without
talking to it. Each session lasted for five minutes. Examples of the

robot’s behavior in both conditions are shown in Fig. 6. For example,
when speaking the utterance “Both are made in France,” the robot
in the proposed condition brought both hands closer together and
smoothly shifted its head from one hand to the other. In contrast,
the robot in the baseline condition exhibited a larger movement
with its right hand, a smaller motion with its left hand, and unclear
head movement without expression of the intended relation. After
each condition, participants completed a questionnaire evaluating
their impressions of the robot.

Finally, we had semi-structured interviews with the participants.
This study was also approved by the Institutional Review Board.

6.5 Measurement
We evaluated competence, sociability, and animacy by using 1-to-7
point Likert-scale questionnaires composed of validated items.

• Competence: Measured using six RoSAS items[5] - capable,
responsive, interactive, reliable, competent, and knowledgeable.

• Sociability: Measured using four HRIES items[39] - warm,
likeable, trustworthy, and friendly.

• Animacy: Measured using four HRIES items - alive, natural,
real, and human-like.

6.6 Results
6.6.1 Verification of Predictions.

• Competence: As illustrated in the first set of bars in Fig. 7,
competence scores were averaged across the six correspond-
ing items. A Shapiro-Wilk test confirmed normality for both
conditions (𝑊𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = .957, 𝑝 = .481;𝑊𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 = .977, 𝑝 =
.885). Consequently, a paired t-test was employed. There
was a significant difference between the proposed condition
(𝑀 = 5.417, 𝑆𝐷 = 0.844) and the baseline (𝑀 = 4.117, 𝑆𝐷 =
1.279), 𝑡 (19) = 6.264, 𝑝 < .001, Cohen’s 𝑑 = 1.401. This sup-
ports P1: the robot with co-speech relational gestures
was perceived as more competent.
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Figure 7: Results from our quantitative measures. The error bars
show the standard error for the mean at ±1 SE. (∗∗ : 𝑝 < .01, ∗ ∗ ∗ :
𝑝 < .001)

• Sociability: As shown in the second set of bars of Fig. 7, so-
ciability scores were averaged across the four corresponding
items. Normality was confirmed (𝑊𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = .948, 𝑝 = .342;
𝑊𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 = .975, 𝑝 = .863). A paired t-test showed a signifi-
cant increase in sociability for the proposed condition (𝑀 =
5.150, 𝑆𝐷 = 1.043) compared to the baseline (𝑀 = 4.250, 𝑆𝐷
= 1.360), 𝑡 (19) = 3.105, 𝑝 = .006, Cohen’s 𝑑 = 0.694. This sup-
ports P2: the robot with co-speech relational gestures
was perceived as more sociable.

• Animacy: As shown in the third set of bars of Fig. 7, ani-
macy scores were averaged across the four corresponding
items. Normality was also confirmed (𝑊𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = .944, 𝑝 =
.281;𝑊𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 = .964, 𝑝 = .628). The proposed condition (𝑀
= 4.475, 𝑆𝐷 = 1.085) was rated significantly higher than the
baseline (𝑀 = 3.350, 𝑆𝐷 = 1.215), 𝑡 (19) = 3.135, 𝑝 = .005, Co-
hen’s𝑑 = 0.701. This supports P3: the robot with co-speech
relational gestures was perceived as more animate.

6.6.2 Interview Results. When asked to explain their judgments
regarding competence, 19 participants remarked that the robot’s
relational gestures were well-aligned with its speech, making the ex-
planations easier to follow. Six participants noted that these gestures
closely resembled those of human shopkeepers, which enhanced
the robot’s perceived competence. In contrast, four participants
described the robot without relational gestures as mechanical, as
if it were simply playing a recording or broadcasting information.
One participant even compared its behavior to a child waving a toy
around, which she found annoying.

In terms of sociability and animacy, 12 participants favored the
robot with relational gestures, explaining that its demonstrated
competence made it appear better suited for social interaction. Two
of them also noted that this perceived competence increased their
trust in the robot. However, four participants expressed a contrast-
ing view: they felt that natural human behavior often includes
minor or awkward movements, which contribute to a sense of
charm or lifelikeness. As a result, they found the robot without
relational gestures more appealing. Interestingly, one participant
reported discomfort with how closely the robot mimicked human
shopkeeper behavior, expressing a preference for robots that are
“not too clever,” as this maintained a clearer boundary between
humans and robots.

7 Discussion
7.1 Design Implications
Our system demonstrates that LLMs can effectively generate re-
lational gestures for object comparison tasks. This highlights the
value of integrating empirical findings on human behaviors into
generative AI systems to produce expressive and communicative
robot behaviors with relational cues.

Beyond this specific application, our approach outlines a gen-
eralizable pipeline for behavior generation: (1) identify a target
communicative function; (2) collect natural human interaction data
that exemplifies this function; (3) analyze the data to extract behav-
ior patterns (e.g., gestures, object manipulations); and (4) use large
foundation models (e.g., LLMs, VLMs) to generate behaviors guided
by identified patterns. This framework bridges empirical human
studies with generative AI, and can be used broadly in domains
such as human–robot interaction and virtual agents.

7.2 Limitations and Future Works
While our results demonstrate the effectiveness of relational ges-
tures, several limitations should be acknowledged. First, our data
collection focused on retail scenarios with professional shopkeep-
ers comparing hand-held objects. Although the participants had
extensive sales experience and the selected object pairs covered
common everyday items with varied features, the observed gestures
may not fully represent relational gestures used in other domains
such as education or collaborative work. Second, our system pri-
oritizes the most frequently observed gestures, which supports
reliable evaluation but reduces the variability and expressiveness
typical of natural human gesturing. Finally, the system is not yet
optimized for fully real-time use, as LLM-based gesture integration
can introduce latency.

Accordingly, future work should extend data collection to more
diverse participant groups, domains, and interaction scenarios, and
explore richer gesture variants. In addition, system responsiveness
should be improved through more efficient gesture integration and
advances in lightweight LLMs.

8 Conclusion
We explored how robots can communicate object relations through
relational gestures. We began by collecting behavioral data from
shopkeepers comparing objects. Through analysis of their speech
and gestures, we identified four common types of object relations,
along with representative gestures for each. Building on these
insights, we developed an LLM-based system that can generate
relational gestures for comparing objects. We evaluated the sys-
tem through two user studies. The first study with 20 participants
showed that participants were able to accurately identify the in-
tended object relations from robot relational gestures. The second
study with another 20 participants revealed that robots using re-
lational gestures were perceived as more competent, sociable, and
animate than those without them.
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