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ABSTRACT 
In retail settings, a robot’s one-handed manipulation of objects can 
come across as thoughtless and impolite, thus creating a negative 
customer experience. To solve this problem, we frst observed how 
human shopkeepers interact with customers, specifcally focus-
ing on their hand movements during object manipulation. From 
the observation and analysis of shopkeepers’ hand movements, 
we identifed an essential element of their idle hand movements: 
"support" provided by the idle hand as the primary hand manip-
ulates an object. Based on this observation, we proposed a model 
that coordinates the movements of a robot’s idle hand with its 
primary task-engaged hand, emphasizing its supportive behaviors. 
In a within-subjects study, 20 participants interacted with robot 
shopkeepers under diferent conditions to assess the impact of incor-
porating support behavior with the idle hand. The results show that 
the proposed model signifcantly outperforms a baseline in terms 
of politeness and competence, suggesting enhanced object-based 
interactions between the robot shopkeepers and customers. 

CCS CONCEPTS 
• Human-centered computing → Human computer interac-
tion (HCI); • Computer systems organization → Robotics. 
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1 INTRODUCTION 
In recent years, the feld of robotics has witnessed signifcant ad-
vances in human-robot interaction (HRI), with social robots increas-
ingly being deployed in museums [14, 17], retail stores [10, 31, 35], 
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Figure 1: An example highlighting the importance of hand 
motion subtleties 

schools[21, 42], and healthcare [1, 28]. While these technological ad-
vancements are undeniably impressive, one cannot help but notice 
a signifcant gap in the robots’ ability to convey social presence. 

The subtleties of hand motion, for instance, play a crucial role in 
human interactions, but they are often overlooked in robotic design. 
Imagine walking into a shop where a robot acts as the shopkeeper 
(Fig. 1 (a)): how would you feel if the robot continually handled a 
box containing a diamond ring with one hand while its other hand 
remained idle? 

In the human realm, a shopkeeper who interacts with products 
using only one hand is often perceived as inattentive or even impo-
lite. A competent shopkeeper, in general, actively coordinates both 
hands in a manner that not only increases efciency but also adds 
a layer of social appropriateness and politeness. For instance, in 
the given scenario where a diamond ring is being shown, a human 
shopkeeper would typically hold the box with one hand while using 
the other to provide additional support, as illustrated in Fig. 1 (b). 
In contrast, a robot shopkeeper that persists in using only one hand 
could be seen as less lively, lacking the depth of a social entity we 
would naturally expect. 

Recently, there has been a sustained research efort toward im-
proving the acceptance of social robots as social entities. One con-
cept related to this efort is idle motion. It can present a basic level 
of the "illusion of life," which helps people regard robots as so-
cial entities [20]. Idle motions refer to "adaptor movements," i.e. 
postural or other non-verbal movements often performed during 
idle moments [2]. Previous studies mainly explored the impact of 
head motion (e.g., head-scratching), face motion (e.g., eye-blinking, 
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mouth movement), arm motion (e.g., arm-folding), and leg motion 
(e.g., leg-swinging) [9, 22, 24] on enhancing robots’ social presence 
when robots are not engaged in specifc tasks. 

However, our scenario presents a unique challenge: the robot 
is not in an idle state, but one of its hands, which is not required 
for the object manipulation task, remains idle. How this unused 
hand (hereinafter referred to as the idle hand) should move while 
the primary hand executes manipulative tasks remains an open 
question. 

To the best of our knowledge, little research has been conducted 
on the coordination of the idle hand with the primary hand for 
social purposes. To this end, we introduce the novel concept of 
"idle hand motion," which here refers to the coordination of the 
idle hand with the primary hand during ongoing manipulation. 
Our work makes two main contributions. First, we propose the 
concept of idle hand motion and its corresponding model. Second, 
we explore the impact of idle hand motion on enhancing a robot’s 
social acceptance, particularly in the role of a shopkeeper. 

2 RELATED WORK 

2.1 Gestures in Human Communications 
People commonly use gestures during interactions to draw the 
attention of listeners [15], disambiguate unclear speech, and sup-
plement speech with additional information [23]. All visible hand 
movements except for self-touching and object-manipulations are 
regarded as gestures [23, 32]. In general, gestures can be divided 
into four common types: (1) iconics, which have a close relationship 
to the semantic content of speech, (2) metaphorics, which present 
an image of an abstract concept such as knowledge, (3) deictics, 
which are pointing movements towards concrete entities or ab-
stract space, and (4) beats, which are typically frequent biphasic 
(e.g., up-and-down, back-and-forth) movements [32]. These ges-
tures greatly support human communication, and they enhance 
learning and memory. Feyereisen [13] investigated that sentences 
with representational gestures are easier to recall for listeners than 
nonrepresentational ones. Cook et al. [8] found that gestures help 
children learn new mathematical concepts during instruction. 

In our study, idle hand motion can be used to draw attention and 
convey politeness and competence. Therefore, idle hand motion 
can be considered to be a gesture. 

2.2 Idle Motions 
Idle motions in animations refer to micro-movements that occur in 
idle states between animation clips [12]. These subtle motions im-
bue agents with lifelike qualities. For example, Kocoń [25] proposed 
a method to synthesize idle motion for virtual persons, enhancing 
perceptions of friendliness. Egges et al. [12] developed a fexible 
idle motion engine for virtual agents in idle states. 

Research on human-robot interaction has also recognized that 
micro-movements play an important role in making robots ani-
mated and alive in the idle state. Social robots such as Robovie 
[22] use idle motions like "scratch the head" and "fold its arm" to 
indicate they are lifelike, but how these idle motions afect the hu-
man perception of robots has not been investigated. Song et al. [43] 
observed clerks via video ethnography, extracted several idle mo-
tions (e.g., mouth movement, arm movement), and tested whether 

these idle motions could be recognized when they were applied to 
a robot. Cuijpers and Knops [9] conducted an experiment in which 
participants were exposed to diferent levels of social verifcation. 
They found that robots with low levels of social verifcation that 
portrayed idle motions (e.g., breathing, gaze shift motion), were 
more anthropomorphic and emotionally expressive compared to 
robots lacking such motions. 

To summarize, existing studies focus on the synthesis of idle 
motions from human behavior observations, primarily in contexts 
where robots are in an idle state. However, the use of the idle hand 
during manipulation tasks has not yet been investigated. 

2.3 Two-handed Motions 
Recent research in human-robot interaction has extensively ex-
plored two-handed gestures. Huang and Mutlu [18] analyzed how 
participants used gestures while describing a paper-making activity, 
and further investigated the use of gestures for enhancing inter-
action. They later modeled the coordination of speech, gaze, and 
gesture in narration using a dynamic Bayesian network [19]. 

Research on two-handed manipulation has been intensively pur-
sued over the past few decades. Bai et al. [3] presented an approach 
of dual-arm coordinated control for twisting manipulation, merging 
optimized motion planning with real-time human-led teleopera-
tion. Vahrenkamp et al. [45] proposed a Grasp-RRT algorithm to 
generate collision-free dual-arm grasping motions. Bestick et al. 
[4] developed an approach to estimating personalized human kine-
matic models, and it could generate safer and more motion for 
two-handed robot-to-human handovers. 

Existing research on two-handed gestures and manipulations 
has primarily concentrated on coordinating hand motions where 
both hands are essential for communication or task execution. By 
contrast, our study is unique in examining how one unused hand 
can be coordinated with the other hand, which sets our research 
apart from the existing literature. 

2.4 Social Cues of Hand Motions 
Legibility, i.e., the intuitive understanding of robots’ intentions, is 
crucial for coordinating joint action and positive perception [30]. 
Dragan et al. [11] developed a model for generating goal-directed 
legible arm motions and legible pointing gestures [16]. Bodden 
et al. [5] introduced a method for synthesizing legible manipulation 
motions, enhancing the robot’s communicative intent. 

Polite hand motions are another way to non-verbally signal 
intent to humans. Politeness can be manifested by etiquette that 
makes use of verbal, physical, and gestural modes of interaction 
[33]. A representative example of this is the practice of passing ob-
jects with both hands to convey politeness, a gesture deeply rooted 
in traditions like the Japanese tea ceremony [44]. Central to polite-
ness is Brown and Levinson [6]’s Politeness Theory, emphasizing 
the importance of maintenance of "face" in social interactions. This 
theory has been widely applied in the feld of HRI. Kumar et al. [27] 
noted that a robot’s polite behavior infuenced user perceptions. 
Ritschel et al. [39] found gender-based preferences for a compan-
ion robot: male participants favored polite robotic feedback, while 
females opted for more direct commands. Rea et al. [37] found that 
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Figure 2: Situations where the support hand behavior occurs during shopkeeper-customer interaction 

Figure 3: An example of how a human shopkeeper returns to support an object with the idle hand 

although an impolite robot was not preferred during physical ex-
ercises, it pushed participants to perform better than a polite one. 
Lee et al. [29] explored how perceived politeness levels in a robot’s 
speech and gestures can infuence a user’s intention to comply. 

While existing research predominantly focuses on verbal com-
munication, our study aims to address the gap in understanding 
politeness through non-verbal cues, particularly hand motions. 

3 MODEL OF SUPPORT HAND BEHAVIOR 

3.1 Observation of Human Shopkeeper 
Behaviors 

3.1.1 Scenario and Motivations. To understand strategies for 
idle hand usage during object-based interactions, we initially ob-
served shopkeepers’ hand behaviors in ten diferent retail stores in-
formally, with a particular focus on how the idle hand was used. We 
noticed that for expensive items like watches and jewelry shopkeep-
ers often used their idle hand to either directly touch or maintain a 
slight distance from the bottom of them as a support. By contrast, 
this behavior was less observed with cheap items like snacks and 
daily necessities. 

However, due to limitations in video recording, we could not 
quantify this hand behavior. Consequently, we conducted an ob-
servation of object-based interaction between a shopkeeper and a 
customer in a simulated handbag store, where two handbags were 
placed on a table. We selected expensive handbags with the expec-
tation that more interesting interactions would occur during their 
presentation. We then invited four participants with shopkeeper 
work experience (2f, 2m) to conduct role-plays where one acted 
as a shopkeeper and the other as a customer. We focused on how 
the handbags were presented and handled during the sales process, 
without specifc mention of idle hand usage. 

3.1.2 Results. From observation of the shopkeepers, we found 
that one behavior, the shopkeeper’s "support" hand behavior, con-
sistently reoccurs across multiple interactions as expected. In other 

words, when the primary hand is tasked with manipulating an ob-
ject, the other hand, which could actually remain in an idle state, is 
no longer idle but positions itself to support the object. 

We observed that this behavior usually took place in fve situa-
tions during shopkeeper-customer interactions: picking, showing, 
giving, receiving, and placing for the primary hand (Fig. 2). In Fig. 
2 (a), a female shopkeeper grasped a handbag with her left hand 
while her right hand provided support from beneath. In Fig. 2 (b), 
the shopkeeper held the handbag with the left hand while the other 
hand supported it. In Fig. 2 (c), the shopkeeper used the left hand 
to pass the handbag to the male customer with the right hand sup-
porting it. In Fig. 2 (d), the shopkeeper retrieved the handbag by 
grasping it with the left hand while the other hand supported it. 
In Fig. 2 (e), the shopkeeper placed the handbag on the table while 
keeping the right hand under it. 

One representative example of the support hand behavior is 
shown in Fig. 3. In Fig. 3 (a), a female shopkeeper held one handbag 
with the right hand supporting it. When a male customer inquired 
about the diference between the handbag she was holding and 
another on the table, she then used her right hand to pick up the 
second handbag for comparison. Afterwards, she placed the second 
handbag on the table as shown in Fig. 3 (b)–(d). Interestingly, after 
this brief task, her right hand returned to its support hand position 
beneath the frst handbag, as shown in Fig. 3 (e). This behavior 
may be surprising because, even after shifting focus to another 
task, the shopkeeper returns to the initial support hand position, 
highlighting the importance of this motion. 

3.2 Analysis of Support Hand Behavior 
To quantify how the idle hand behaves, we examined the hand 
behaviors for the idle hand and classifed them into four patterns: 
supporting an object (supporting), other idle hand motions such 
as putting the arm down and hanging the arm (others), various 
gestures such as pointing somewhere on the object (gestures), and 
diferent manipulation types such as picking and placing another 
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Table 1: Observed hand behaviors 

Primary 
Hand 
State 

Secondary Hand 
Idle State Busy State 

supporting others gestures manipulations 
picking 6 1 0 0 
showing 16 3 9 11 
giving 4 0 0 0 

receiving 5 0 0 0 
placing 6 2 0 1 
total 37 6 9 12 

handbag (manipulations). Table 1 shows the frequency of these 
patterns in diferent situations. 

From this table, it is clear that the support behavior is by far the 
most commonly used behavior in all situations compared to other 
idle hand motions. Therefore, we chose to focus on the support 
behavior for the idle hand. 

3.3 Reasons for Support Hand 
After the role-plays, we conducted interviews with the participants 
to explore the underlying motivations for their frequent use of the 
support hand behavior while role-playing as shopkeepers. These 
interviews revealed three primary reasons for this behavior: 

• To show politeness to customers, since being polite is an 
expected attitude and even a requirement for shopkeepers. 

• To prevent the products from accidentally falling as it would 
make customers feel uncomfortable. Furthermore, this be-
havior would make customers appreciate the value, fragility, 
and other attributes of the product, which cannot be con-
veyed by casual handling such as one-handed behaviors. 

• To draw customers’ attention to the item being showcased. 

3.4 Modeling 
From the observation of shopkeepers’ behaviors and subsequent 
interviews with the participants, we found that the support hand 
behavior is the main one performed by the idle hand, hence we 
developed a model for this behavior consisting of computing a 
support point and positioning the support hand. 

3.4.1 Computing Support Point. The support point serves as a 
crucial component in our model. As illustrated in Fig. 4, the primary 
hand holds the object while the idle hand supports it beneath the 
“support point.” Here, the support point is essential to the model 
of idle hand motion, and the idle hand basically moves under the 
support point. While for this study we manually selected a point at 
the bottom of the held object to be the support point, let us explain 
how the support point could be computed. 

In theory, this point can be computed through physical simula-
tions that take into account geometric shape, weight distribution, 
and a set of specifc criteria defning what makes a "support point" 
optimal in the given context (e.g., most stable, most visually human-
like). The steps for the computation are as follows. First, calculate 
the center of mass of the object using the available information on 
the geometric shape and weight distribution of the object. Second, 
sample candidate points along the edge of the object that are located 
below the center of mass. Third, assess and rank these candidate 

Figure 4: Schematic diagram of support hand behavior 

points based on the provided criteria. Finally, choose the optimal 
point that best meets the defned criteria. The point we manually 
chose satisfes the idea included in these computation steps. 

3.4.2 Positioning Support Hand. Upon determining the opti-
mal support point, the next step is to accurately position the idle 
hand. This involves not only computing the position but also the 
orientation of the idle hand. In observations of the human shop-
keeper, the idle hand was frequently situated just below and in 
direct contact with the handbag, with the palm facing upwards and 
fngers pointing sideways and forward, to naturally support the 
object being held by the primary hand as illustrated in Fig. 4. 

However, the support hand behavior does not always imply 
direct contact with the object. Physical support is only necessary 
when the object is too heavy to be efectively handled by one hand. 
In the case of lighter objects, it is sufcient to place the support 
hand below, but not touching, the object. Placing the support hand 
in such a way accomplishes the goal of emphasizing the object and 
signaling politeness, while also making it possible for the primary 
hand to showcase the object by rotating it and showing diferent 
angles. For instance, human shopkeepers showcasing a handbag 
might rotate it repeatedly to display its shape and fner details while 
maintaining a slight gap between the object and the support hand. 
Thus, the robot should emulate this behavior. 

4 IMPLEMENTATION 
We implemented an autonomous robot system that reproduces the 
support hand behavior observed in Section 3. 

4.1 Robot Hardware 
We used the TIAGo++ robot [36] from PAL Robotics. The robot 
features a mobile base, a lifting torso, a head, and two arms. Both 
arms have 7 degrees of freedom (DoF) ending in grippers, and the 
torso has a stroke of 35 cm so that the height of the robot can be 
adjusted between 110 and 145 cm. Its eyes are equipped with an 
RGB-D camera, and there are speakers inside the base. 

4.2 Architecture 
Fig. 5 illustrates the architecture of the proposed model. The point 
cloud from the RGB-D camera is passed to the collision avoidance 
module, which represents the operating environment for the robot. 
Meanwhile, to address the potential occlusion of parts of the object 
by the robot’s gripper, a 3D model of the object is also fed into this 
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Figure 5: Diagram of implementation of proposed model 

module. The support motion module takes the goal pose for the 
primary hand and the 3D model of the object being held as input, 
and it outputs the joint goal poses for both hands. To generate an 
optimal joint arm trajectory for both hands, the motion planner 
module takes the goal poses of both hands as input, subject to meet-
ing the user-specifed constraints and avoiding collisions. When 
the idle hand is engaged in specifc tasks, its goal pose is fed to the 
motion planner module, which generates an optimal arm trajectory 
as shown in the dotted box in this fgure. 

4.3 Collision Avoidance 
To generate hand motions without collision, we need to build a 
3D representation of the environment around the robot. This is 
achieved by the collision avoidance module, which uses point cloud 
data from the RGB-D camera to create a 3D occupancy grid map 
called Octomap. This Octomap provides information on where 
obstacles are located in the robot’s environment, and it is directly 
passed to the fexible collision library (FCL) for collision checking. 

4.4 Support Motion 
The support motion module generates the goal pose for the idle 
hand. As described in Section 3.4.2, human shopkeepers leave a 
slight distance between the bottom of the object and the idle hand. 
Therefore, we decided to keep such a distance. We empirically 
adjusted the distance between the support hand and the object to 
10 centimeters, aiming to reproduce this distance impression as well 
as the stability and safety of the arm motion (too close a distance 
sometimes causes planning failure, as the carried object becomes 
an obstacle for the planner). 

Meanwhile, we found that the palm of the idle hand is parallel 
to the ground from our observations of how human shopkeepers 
used the support hand behavior. Consequently, the roll angle was 
set to 90 degrees, which makes a wider surface of the gripper to 
support the object, the pitch and yaw angles were set to zero and 
45 degrees respectively. 

4.5 Motion Planner 
Given the goal poses of both hands, the motion planner module 
computes the joint arm trajectories, i.e. time-series of all joints 
of both arms. Here, we assume that the goal pose is within short 
straight lines from the current poses. In cases where longer distance 
travel is needed, a series of sub-goals for both arms need to be 
pre-computed and provided to this module to ensure synchrony 
between both arms. Thus, we use the support motion module in 
conjunction with the motion planner module to plan trajectories 
from one sub-goal to the next. 

HRI ’24, March 11–14, 2024, Boulder, CO, USA 

We select the RRT-Connect motion planner [26] for our sys-
tem because of its ability to quickly fnd a feasible arm trajectory 
between the start pose and the goal pose, and its suitability for 
user-specifed constraints. The motion planner module takes the 
goal poses for both hands as input, and outputs a synchronized joint 
arm trajectory, enabling both arms to reach their corresponding 
pose at the same time. 

However, due to the characteristics of RRT-Connect, the gener-
ated arm trajectory is often not optimal, as it is excessively long and 
visually strange to humans. To counteract this, we sample many 
candidate arm trajectories, and select the one with the shortest 
length as optimal, since a good arm trajectory should avoid long 
detours between the start pose and the goal pose. The length of the 
trajectory can be summed by the coordinates of both grippers com-
puted by forward kinematics and basic transformation for points 
in the planned arm trajectories. Moreover, to make the trajectories 
natural and human-like, we set user-specifed constraints on joint 
angles that conform to human shoulder and elbow positions. 

The entire process of deriving the optimal joint arm trajectory for 
the support hand behavior is encapsulated in Algorithm 1, where 
�(�) represents the length of the joint arm trajectory for both arms. 

Algorithm 1 Generation of optimal joint arm trajectory 

Input: Start Pose �start_p, Start Pose �start_s, Goal Pose �goal_p, 
Object � being held, Number of Candidate Trajectories �, User-
specifed constraints �user 

Output: Optimal joint arm trajectory � ∗ 

1. Compute Goal Pose for Support Hand: 
�goal_s ← SupportHandModel(�goal_p, �)

2. Generate Candidate Arm trajectories: 
for � = 1 to � 

�� ← ����������(�goal_p, �goal_s,�user)
end for 
List candidate joint arm trajectories � = {�1, �2, ..., �� }

3. Select Optimal Arm Trajectory: 
� ∗ = arg min� ∈� �(�) ��� ���� �� �user (�) 

4.6 Trajectory Execution 
Our robot system is based on the MoveIt framework 1. The trajec-
tory execution module is responsible for taking a planned trajectory 
and executing it with the physical robot automatically. 

5 EVALUATION 

5.1 Hypotheses 
Drawing from the insights in Section 2.4, handling an object with 
two hands is generally considered more polite than using just one. 
Supporting this, Tagai et al. [44] found in their fMRI study that ob-
serving an action involving two hands was associated with higher 
politeness compared to the use of one hand. Additionally, our ob-
servations of polite and competent shopkeepers revealed that they 
often use the support hand behavior when picking, placing, show-
ing, and passing items to customers or receiving them back, and 
thus we made the following two hypotheses: 
1https://moveit.ros.org/ 
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• H1: Participants perceive robots with the support hand be-
havior as more polite than those without it. 

• H2: Participants perceive robots with the support hand be-
havior as less rude than those without it. 

Meanwhile, Cuijpers and Knops [9] reported that robots perform-
ing meaningful motions are seen as more socially competent and 
skilled than those engaging in idle or no motions. In our study, we 
regard the support hand behavior as one such meaningful motion. 
Considering that demonstrating politeness is a crucial aspect of a 
shopkeeper’s role, we expect robots behaving in a polite manner to 
be perceived as competent in their role as a shopkeeper. We thus 
developed the following hypothesis: 

• H3: Participants perceive robots with the support hand be-
havior as more competent than those without it. 

5.2 Participants 
We recruited a total of 20 participants from a part-time job recruiting 
website in the age range of 18 to 60 years (� = 35.75, �� = 14.79). 
Ten of them self-identifed as male, and ten as female, with a similar 
number for diferent age groups. All participants who took part in 
the experiment were compensated with 3000 JPY. 

5.3 Conditions 
The robot’s performance was compared under the following two 
conditions: 

• Proposed: The robot runs in the support hand mode as de-
scribed in Section 4. 

• Baseline: The support motion module is excluded from the 
architecture of the proposed model. In this case, the goal pose 
of either hand is directly fed to the motion planner module. It 
then outputs the arm trajectory for the corresponding hand, 
as shown in the dotted box in Fig. 5. 

We chose a within-subjects design to allow participants to expe-
rience diferent conditions since even in Japan, where many robots 
are being deployed in public spaces, people remain unfamiliar with 
robots and lack consensus on the standards for politeness in their be-
haviors. Meanwhile, the order of conditions was counter-balanced. 

5.4 Procedure 
When participants arrived at the experiment site, they were frst 
introduced briefy to the study and procedure. They were then 
asked to sign a consent form. To make participants comfortable 
around the robot, we showed several demos of speech and hand 
movements by the robot, and then we asked them to control the 
robot through the remote controller. Afterwards, each participant 
was instructed to play the role of a customer who showed interest 
in one of the handbags. The robot shopkeeper would show the 
handbag with synchronized speech and pass it to and from the 
customer. In response, the customer needed to receive the handbag 
from the customer and then give it back to the shopkeeper after 
trying it on. After each condition, the participant was asked to 
complete a questionnaire. Finally, after interacting with the robot 
in both conditions, a semi-structured interview was conducted. The 
experiment was approved as ethical by the Institutional Review 
Board. The experiments and interviews were conducted in Japanese. 

5.5 Measurement 
Dependent variables of politeness, rudeness, and competence were 
measured through a questionnaire that is composed of several 1-to-7 
point Likert items. 

• Politeness and Rudeness 
We consulted the latest review on politeness, compiled by Ribino 
[38], but did not fnd any validated scales or commonly-used ques-
tionnaires for measuring politeness and rudeness. Therefore, we 
decided to adopt the items used in Salem et al. [40, 41], to assess 
politeness with the item ’polite’ and rudeness with the item ’rude.’ 

• Competence 

We adopted all six items for measuring competence from the RoSAS, 
a validated scale frequently used in the HRI community [7]. These 
items are ’capable,’ ’responsive,’ ’interactive,’ ’reliable,’ ’competent,’ 
and ’knowledgeable.’ 

6 RESULTS 

6.1 Observation 
Fig. 6 and 7 show typical interactions in the proposed condition 
and the baseline condition respectively. The robot frst greets the 
customer and then introduces the handbag while interleaving the 
pointing gesture. It gives the handbag to the customer and receives 
it back after the customer examines the handbag. Participants gen-
erally behaved with the robot as they would behave with human 
shopkeepers, nodding to the robot’s speech. This behavior was 
consistent between conditions. 

Interestingly, we did observe some social behaviors toward the 
robot. In both conditions, many participants nodded to the robot 
when it greeted them. Moreover, a large proportion of participants 
who rated the robot with the proposed model as more polite tended 
to bow to the robot before or after they passed the handbag to the 
robot (Fig. 8 (a)). In addition, one participant attempted to talk to 
the robot even though she knew it could not respond (Fig. 8 (b)). 

6.2 Verifcation of Hypotheses 
6.2.1 Politeness and Rudeness. First, we conducted the Shapiro-
Wilk test to assess the normality of the data. For the item "polite," 
both the baseline condition (� = .810, � = .001) and the proposed 
condition (� = .708, � < .001) showed signifcant departures from 
normality. Similarly, for the item "rude," both the baseline condition 
(� = .642, � < .001) and the proposed condition (� = .495, � < .001) 
were also signifcantly non-normal. Such non-normality breaks 
the assumption for using the t-test. Therefore, we decided to use 
Wilcoxon’s rank sum test (also known as the Mann-Whitney U 
test), a non-parametric test with no strict requirement for data 
distribution and variance. 

As shown in the frst set of bars in Fig. 9, there is a signifcant 
diference between the proposed model (� = 6.450, �� = .759) and 
the baseline model (� = 5.200, �� = 1.609) for the item "polite" (� 
= 96, � = .002). This result supports our frst hypothesis: A robot 
using the proposed model is perceived as more polite than the robot 
using the baseline model. 

In the second set of bars, the diference between the proposed 
model (� = 1.200, �� = .410) and the baseline model (� = 1.850, 
�� = 1.461) for the item "rude" was not statistically signifcant (� 
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Figure 6: Robot in proposed condition 

Figure 7: Robot in baseline condition 

Figure 8: Social behaviors toward the robot 

Figure 9: Results. The error bars show the standard error for 
the mean at ±1 ��. (+ : .05 < � < .1, ∗ : � < .05, ∗∗ : � < .01) 

= 246, � = .063). Although this result does not support our second 
hypothesis, it suggests its approaching signifcance. 

6.2.2 Competence. To obtain the data for the item "competence," 
we averaged the above-mentioned six items for the scale from the 
RoSAS. As done above, we ran the Shapiro-Wilk test on the data 
of the item "competence." The test results indicate that the data 
of both the baseline condition (� = .976, � = .865) and the pro-
posed condition (� = .972, � = .792) followed a normal distribution. 
Consequently, a paired t-test was used to evaluate the statistical 
signifcance of the diferences in competence between conditions. 

As illustrated in the third set of bars in Fig. 9, the diference 
between the proposed model (� = 5.050, �� = .949) and the baseline 
model (� = 4.600, �� = 1.140) was signifcant (paired t-test t = -2.193, 
� = .020), and the efect size was small (��ℎ�� ′ � � = .204). This result 
supports our third hypothesis: A robot using the proposed model is 
regarded as more competent than a robot using the baseline model. 

6.3 Interview Results 
When asked about the reason for their judgments on politeness, 
nine participants attributed their positive judgments to the robot’s 
support hand behavior, noting its resemblance to human shopkeep-
ers’ respectful service with both hands. Two participants empha-
sized that the robot’s careful handling of products, as indicated 
by its support hand behavior, suggested a dedication to providing 
superior service. Another two recognized diferences in robot be-
havior across conditions but perceived equal levels of politeness 
in both. Six participants reported that they did not fnd diferences 
between the conditions. Interestingly, one female participant per-
ceived the robot exhibiting the support hand behavior as less polite, 
interpreting this as the robot exerting sales pressure, which made 
her uncomfortable. 

When it came to the robot’s competence, three participants re-
ported that a robot demonstrating great service etiquette implied 
greater competence. Two participants observed that the support 
hand behavior mirrored that of human shopkeepers, enhancing 

558



HRI ’24, March 11–14, 2024, Boulder, CO, USA 

perceptions of the robot’s competence. Two others linked the ro-
bot’s meticulous product handling to competence. Additionally, one 
participant remarked that the robot’s enthusiasm in presenting the 
product was indicative of competence. The remaining participants 
based their assessments on subjective feelings, without providing 
specifc reasons for their viewpoints. 

7 DISCUSSION 

7.1 Design Implications 
As robots become integral to our daily lives, understanding the 
sociological aspects of their interactions, especially concerning 
object manipulation, gains paramount importance. One facet of 
this is the concept of ’legibility’ of robot motions. Recent studies 
[5, 11] focus on developing robot motions with clear intentions to 
enhance their legibility. This principle emphasizes designing robot 
motions that humans can quickly and easily interpret, fostering 
smoother and more predictable interactions. Drawing parallels to 
the research on feeding support [34], we see a similar emphasis on 
the sociological dimensions. Robot feeding behavior, as outlined in 
their work, must be subtle and not draw undue attention, suggesting 
that robots should not only perform tasks but also align with the 
unspoken social codes governing those tasks. 

The support hand behavior serves as an illustrative example of 
this merging between the physical and the sociological, ofering 
insights into designing more socially-aware robots. 

7.2 Should Robots Exhibit Support Hand 
Behavior? 

It is arguable whether robot shopkeepers need to exhibit the support 
hand behavior. While operating both hands consumes more energy 
than one, potentially requiring more frequent recharging of the 
battery-operated robots, we believe that stores would prefer to 
use the support hand behavior simply to give an impression of 
politeness or competence. If retail stores’ target shoppers value a 
more "human-like" shopping experience, robots with the support 
hand behavior might be considered justifed. Furthermore, given 
labor shortages, robots will very likely be shopkeepers in the future. 
Such robots are expected to provide interactions that are not just 
transactional but also socially-appropriate or socially desirable. 
Expressing politeness and competence through the support hand 
behavior can be a vital component of this development, greatly 
contributing to making the robots more acceptable to users. 

7.3 Which Occasions Should Robots Exhibit 
Support Hand Behavior? 

The use of the support hand behavior by robots should align with 
cultural norms, customer expectations, and specifc service con-
texts. In luxury retail, this behavior not only underscores the item’s 
value but enhances customer engagement. Similarly, in cultural 
rituals like tea ceremonies, the dual-handed presentation is synony-
mous with respect, warranting robots to emulate this to uphold the 
ceremony’s essence. In hierarchical settings, using both hands to 
present items conveys deference, emphasizing the importance of 
recognizing social norms in robot behaviors. Conversely, in casual 
contexts like convenience stores, where efciency is prioritized, 
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such formalities may be superfuous. Finally, the support hand be-
havior can be used for small, lightweight objects that do not require 
two hands to hold. For large, heavy objects a two-handed grip is 
required, which is beyond the scope of our study. 

7.4 Generalizability across Cultures 
It remains an open question whether the support hand behavior 
can be applied to other cultures. However, our study provides pre-
liminary insights and serves as a starting point for an extensive 
investigation into the use of idle hand motions in diferent cultures. 

While this research was conducted in Japan, we believe that the 
support hand behavior shows potential for use in diferent cultural 
contexts. The use of both hands for handling objects signifes po-
liteness, and this practice is prevalent in East Asian countries such 
as China and Korea [44]. Additionally, we asked several members 
of our lab with international backgrounds about their impressions 
of the support hand behavior. They responded that they had also 
observed the support hand behavior overseas (including North 
America and Europe). They felt discomfort when observing shop-
keepers handle valuable items with a single hand, but did not mind 
in the case of inexpensive items. 

7.5 Limitations 
While revealing the importance of the support hand behavior, there 
are still several limitations to this work. First, we chose only hand-
bags in the observation and evaluation; it is uncertain whether peo-
ple would rate the robot diferently with other objects regarding 
politeness and competence. Second, as the observation of shop-
keepers’ hand behavior and the experiment were conducted in a 
laboratory setting, the situation would be a bit diferent in a real-
world environment. However, we believe our experiment design 
efectively captured the important factors of hand motions in object-
based interactions, and the setup allowed us to focus on the hand 
motions and not other factors such as verbal interaction. 

8 CONCLUSION 
This study was motivated by the phenomenon in which robots 
keeping one hand fully idle during object manipulation gives the 
impression of weirdness, particularly in roles demanding social cues 
such as that of shopkeepers. Accordingly, we frst observed how 
human shopkeepers served customers with both hands, identifying 
the supportive role of the idle hand during object-based interactions. 
We then developed a computational model to replicate the support 
behavior for the idle hand of robot shopkeepers. The experimental 
results indicate that robots implemented with support behaviors for 
the idle hand are perceived as markedly more polite and competent 
than those without such behaviors. We believe that the incorpora-
tion of the support hand behavior can drastically enhance social 
acceptance of robots, especially in roles like shopkeepers. 
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